电源技术网|技术阅读
登录|注册

您现在的位置是:电源技术网 > 技术阅读 > 锂离子电池气体成分表征方法

锂离子电池气体成分表征方法

01

背景

锂离子动力电池在化成、过充/过放、热失控、循环过程都会有气体发生。化成阶段,锂离子电池内部由于固态电解质界面膜(Solid Electrolyte Interface, SEI) 的形成会产生一定量的气体。气体的含量、气体种类和气体变化率等方面可以反映SEI形成的质量和程度,进而反映电池化成的好坏。过充/过放时,电解液在正负极被氧化还原而分解,正极材料氧析出等产生大量气体。过充/过放甚至会进一步引发热失控,发生链式反应,产生大量气体。电池在正常运行过程中,电极表面副反应不断进行,也会缓慢地产生气体。在劣化严重的情况下,电池发生鼓包,影响到电池的安全和性能。气体成分和含量直接反映了电池内部副反应发生的程度,与电池的健康和安全状态密切相关。研究电池各阶段气体信号,定量表征及分析电池产气情况至关重要。当前锂离子电池气体的表征方法可以分为非原位和原位表征两种方式。


02

气体成分表征方法

2.1 气体成分非原位表征方法

目前,电池气体成分的方法多借助非原位表征的材料学分析手段,如图1所示,包含气相色谱质谱法(Gas Chromatography-Mass Spectrometry, GC-MS)[1],傅里叶变换红外光谱法(Fourier Transform-Infrared Spectroscopy, FT-IR)[2,3],核磁共振光谱(Nuclear Magnetic Resonance, NMR)[4-7]。


图 1 气体成分监测方法


W. Kong等人[8] 将LiCoO2、LiMn2O4和LiFePO4三种正极材料的18650锂离子电池正常充电和过充至4.5 V和5.0 V,然后用注射器收集电池内部的气体并采用GC-MS测量了气体成分,如图1(a)所示。研究发现,在正常充电条件下,气体发生行为与正极材料类型无关。在过充条件下,阴极材料的氧化能力对气体种类和数量有显著影响。Fredrik Larsson等人[9]用7种不同类型锂离子电池进行了燃烧实验,用FIRT定量测量了电池燃烧所释放的气体,结果表明燃烧会产生大量的氟化氢(HF)和少量的氟化磷(POF3)有毒气体。Nina Laszczynski等人[10]对NCM811电池高压下电解质分解情况进行了研究,使用NMR等多种方法测量了电解质分解的气体成分,研究发现当截止电压从4.2 V增加到4.6 V时,O2和CO2的释放量随之增加。非原位的方法不能检测充放电循环中时间分辨率上电池产气的情况,需要在电池实验结束后在非大气暴露条件下通过破环性的方式获取电池内部气体进行定量测量。


2.2 气体成分原位表征方法

气体成分原位实时表征的方法采用在线/微分电化学质谱技术(Online/Differential Electrochemical Mass Spectrometry, O/DEMS)[1,11,12],原位拉曼光谱(In-situ Raman Spectra, IRS)[13,14]和非色散红外气体传感器(Nondispersive Infrared Gas Sensors, NDIR)[7,15,16]监测气体成分随电位和时间演变情况,在研究领域受到广泛关注。O/DEMS是将电化学反应池与质谱仪联用,可以实时检测电化学反应界面消耗或产生的气体和挥发性中间产物及最终产物,并进行定性和定量分析。N. Е. Galushkin等人[17]使用O/DEMS监测了NMC111电池在不同上截止电压和温度条件下循环过程中正负极产气的情况,如图1(b)。结果表明电解质分解会产生CO和H2气体,而CO2只在正极生成是正极原子晶格释放的O2与正极附近CO(电解液分解)反应的产物。虽然O/DEMS可以原位测量气体成分,但是该方法需要载气装置将气体输送到质谱仪,这将引起电解质挥发,进而影响电池正常运行。Byambasuren Gerelt-Od等人[18]开发了用于电池分析的IRS分析系统,如图1(c)所示,其在商业电池上安装的玻璃窗进行激光散射,因此可以无干扰地跟踪电池内部电化学反应。研究结果表明满电状态的18650电池在25-45℃环境下存储,会逐渐产生H2, CH4, CO2和CO四种主要气体,过量的H2使电池存在安全隐患。Siqi Lyu等人[19]开发了基于NDIR的气体成分监测装置,将三种NDIR的CO2、CH4和C2H4气体传感器和开口的商业电池共同放在密封罐中如图1(d)所示,监测电池运行时三种气体的演化情况。结果表明,高电压会导致CO2生成量增加,而CH4和C2H4的生成量对温度更敏感。尽管IRS和NDIR以上两种方法可以实时监测商业电池内部气体成分的演化,但是都需要对电池进行较大规模的改造和破坏,并且需要连接大型的气体解析仪器,多用于短期产气机理解析。


2.3 气体成分原位采集方法

气体原位采集方法是通过对电池壳体进行设计,在电池壳体增加取气口,在不影响电池的动态工作过程的前提下,实现多次取气及检测分析,进而实现连续监测气体成分的演变。王绥军等人[20]设计了一个原位气体监测装置,其中电池内部通过导管连接四通阀,四通阀与压力传感器、气体采样口、真空阀连接,可随时记录电池内部压力,也可以通过气密针随时采取气体样品,分析气体组分,如图 2(a)所示。基于此方法该学者研究了钛酸锂电池在55℃循环过程和55℃搁置工况下内部压力、胀气体积、以及各组分气体含量的变化规律,并推导了可能的产气反应。Jan-Patrick Schmiegel等人[21]设计了带气体取样口的软包锂离子电池,其中单向气体取样口由鲁尔接口、GC进气垫和GC采样瓶盖组成并通过PP导管连接电池内部,如图 2(b)所示。该研究人员通过单向取样口多次取气研究了单次充放电循环间气体组分的演变。


图 2气体成分原位采集方法


03

总结

当前气体成分表征方法较为丰富,但是大都需要依赖大型专业的分析设备,难以实现储能或者车载场景电池内部气体的实时检测。未来,长寿命的MEMS气体传感器、光纤气体传感器等微型传感器有望与大容量电池单体进行集成,实现电池内部气体的实时检测,进而为锂离子电池安全管控、健康管理提供新的方法。


04

参考文献

[1]Li, Z., Yao, N., Yu, L., Yao, Y.-X. et al., "Inhibiting gas generation to achieve ultralong-lifespan lithium-ion batteries at low temperatures."  Matter 2023, doi: 10.1016/j.matt.2023.04.012.

[2]Bertilsson, S., Larsson, F., Furlani, M., Albinsson, I. et al., "Lithium-ion battery electrolyte emissions analyzed by coupled thermogravimetric/Fourier-transform infrared spectroscopy."  Journal of Power Sources  365:446-455, 2017, doi: 10.1016/j.jpowsour. 2017.08.082.

[3]Berkes, B. B., Schiele, A., Sommer, H., Brezesinski, T. et al., "On the gassing behavior of lithium-ion batteries with NCM523 cathodes."  Journal of Solid State Electrochemistry  20 (11):2961-2967, 2016, doi: 10.1007/s10008-016-3362-9.

[4]Blanc, F., Leskes, M., and Grey, C. P., "In Situ Solid-State NMR Spectroscopy of Electrochemical Cells: Batteries, Supercapacitors, and Fuel Cells."  Accounts of Chemical Research  46 (9):1952-1963, 2013, doi: 10.1021/ar400022u.

[5]Handel, P., Fauler, G., Kapper, K., Schmuck, M. et al., "Thermal aging of electrolytes used in lithium-ion batteries – An investigation of the impact of protic impurities and different housing materials."  Journal of Power Sources  267:255-259, 2014, doi: 10.1016/j.jpowsour. 2014.05.080.

[6]Deng, Z., Lin, X., Huang, Z., Meng, J. et al., "Recent Progress on Advanced Imaging Techniques for Lithium‐Ion Batteries."  Advanced Energy Materials  11 (2)2020, doi: 10.1002/aenm. 202000806.

[7]Rinkel, B. L. D., Hall, D. S., Temprano, I., and Grey, C. P., "Electrolyte Oxidation Pathways in Lithium-Ion Batteries."  Journal of the American Chemical Society  142 (35):15058-15074, 2020, doi: 10.1021/jacs. 0c06363.

[8]Kong, W., Li, H., Huang, X., and Chen, L., "Gas evolution behaviors for several cathode materials in lithium-ion batteries."  Journal of Power Sources 142 (1-2):285-291, 2005, doi: 10.1016/j.jpowsour. 2004. 10.008.

[9]Larsson, F., Andersson, P., Blomqvist, P., and Mellander, B. E., "Toxic fluoride gas emissions from lithium-ion battery fires."  Sci Rep  7 (1):10018, 2017, doi: 10.1038/s41598-017-09784-z.

[10]Laszczynski, N., Solchenbach, S., Gasteiger, H. A., and Lucht, B. L., "Understanding Electrolyte Decomposition of Graphite/NCM811 Cells at Elevated Operating Voltage."  Journal of The Electrochemical Society  166 (10):A1853-A1859, 2019, doi: 10.1149/2.0571910jes.

[11]Kim, S., Kim, H. S., Kim, B., Kim, Y. J. et al., "In Situ Gas Analysis by Differential Electrochemical Mass Spectrometry for Advanced Rechargeable Batteries: A Review."  Advanced Energy Materials 2023, doi: 10.1002/aenm.202301983.

[12]Zhang, H., Chen, J., Zhang, B., Wu, X. et al., "Tracking gassing behavior in pouch cell by operando on-line electrochemical mass spectrometry."  Journal of Energy Chemistry  84:286-291, 2023, doi: 10.1016/j.jechem. 2023.04.044.

[13]Li, H., Guo, S., and Zhou, H., "In-situ/operando characterization techniques in lithium-ion batteries and beyond."  Journal of Energy Chemistry  59:191-211, 2021, doi: 10.1016/j.jechem.2020.11.020.

[14]Stancovski, V. and Badilescu, S., "In situ Raman spectroscopic–electrochemical studies of lithium-ion battery materials: a historical overview."  Journal of Applied Electrochemistry  44 (1):23-43, 2013, doi: 10.1007/s10800-013-0628-0.

[15]Cai, T., Valecha, P., Tran, V., Engle, B. et al., "Detection of Li-ion battery failure and venting with Carbon Dioxide sensors."  eTransportation  72021, doi: 10.1016/j. etran. 2020.100100.

[16]Xin, Y., Liu, C., Li, N., Lyu, S. et al., "In-situ monitoring of multiple signals evolution behaviour for commercial lithium-ion batteries during internal short circuit."  Applied Energy  3502023, doi: 10.1016/j.apenergy.2023. 121754.

[17]Galushkin, N. Е., Yazvinskaya, N. N., and Galushkin, D. N., "Mechanism of Gases Generation during Lithium-Ion Batteries Cycling."  Journal of The Electrochemical Society  166 (6):A897-A908, 2019, doi: 10.1149/2.0041906jes.

[18]Gerelt-Od, B., Kim, J., Shin, E., Kang, H. et al., "In situ Raman investigation of resting thermal effects on gas emission in charged commercial 18650 lithium ion batteries."  Journal of Industrial and Engineering Chemistry  96:339-344, 2021, doi: 10.1016/ j.jiec.2021.01.039.

[19]Lyu, S., Li, N., Sun, L., Jiao, S. et al., "Rapid operando gas monitor for commercial lithium ion batteries: Gas evolution and relation with electrode materials."  Journal of Energy Chemistry  72:14-25, 2022, doi: 10.1016/j.jechem. 2022.04.010.

[20]Wang, S., Liu, J., Rafiz, K., Jin, Y. et al., "An On-Line Transient Study on Gassing Mechanism of Lithium Titanate Batteries."  Journal of The Electrochemical Society  166 (16):A4150-A4157, 2019, doi: 10.1149/ 2.0631916jes.

[21]Schmiegel, J.-P., Leißing, M., Weddeling, F., Horsthemke, F. et al., "Novel In Situ Gas Formation Analysis Technique Using a Multilayer Pouch Bag Lithium Ion Cell Equipped with Gas Sampling Port."  Journal of The Electrochemical Society  167 (6)2020, doi: 10.1149/1945-7111/ab8409.