关键词:SBGA;一次合格率;工艺改进 随着电子设备向小型化和多功能化集成发展,高密度印制板组件和板板互联结构应运而生,多引脚板间连接器可实现高速信号传递,广泛应用于板卡对接的设备中,大量应用在机载领域、地面领域和舰载领域。本文中的高速多引脚互联器件虽被厂家定义为超级球栅阵列(SBGA)封装,但其结构与传统的球栅阵列(BGA)封装存在一定区别。传统的BGA封装为了强调I/O仍然是“ball”,而本文中的SBGA的I/O的形态为非“ball”的锡铅焊片,两者结构对比如图1所示。基于厂家的定义,初期对该器件选用了与传统BGA封装器件相同的组装工艺参数[1-2],在检验环节中发现其故障率明显偏高,严重影响了产品质量。因此,针对在SBGA装配过程中出现的焊点缺陷进行原因分析,提出改进措施整改后,装配情况良好。
1 问题描述SBGA板间连接器在大量使用时表现出装配一次合格率差的特征,抽查2015年2月到2018年4月含SBGA器件的印制板组件数量及故障件数后,发现数千件的生产产品的合格率只有86%,低于传统BGA组装合格率95.6%的平均水平。SBGA器件焊接缺陷主要有焊点开路、短路、爬锡不足、多余物、三防漆污染和调试损伤等,其典型缺陷如图2所示。进一步分析发现焊点开路和焊点短路占到了缺陷总数的77%,属于常见缺陷。通过评估并结合生产现场的调查,必须着力杜绝这两种缺陷的产生,提高SBGA器件装配的一次合格率。 2 原因分析除了器件的焊片在焊前因受损会导致焊点开路或者焊锡偏少外,多数焊点开路和短路是因为焊料出现了芯吸现象而导致的,此现象的出现主要和焊料的润湿有关。归纳汇总影响各因素的末端元素,关联图如图3所示。通过设备测试、文献查阅、现场调查和参数确认等手段,参照业界水平、国家标准和相关规范要求,对上述11个末端元素进行了依次排查,结合分析数据确认了导致焊点缺陷的主要原因为:
1)回流焊接参数不合理和氮气环境的不良影响;2)网板设计不满足要求;3)前期焊端存在物理损伤。2.1 回流焊接参数不合理和氮气环境的不良影响根据工艺细则要求,焊接SBGA器件时采用的RSS(Ramp-Soak-Spike,升温-保温-回流)焊接曲线,如图4所示。经比对,实际回流过程的升温速率、保温时间、回流时间和降温速率等关键参数均能满足要求,但其中表面张力(气液界面)和润湿力(固液界面)等因素对焊料是否会出现芯吸缺陷产生直接影响呢?在不发生氧化的前提下,温度越高润湿越好,这与表面张力和界面反应有关。对于纯金属,表面张力基本与温度呈现线性关系的减小:
γ m=A-B× T (1)式中: γ m为表面张力, A、 B为材料常数, T为温度。对于合金材料温度越高表面张力越小,润湿性越好。图5示意为SBGA焊接的传热模型,在焊接SBGA引脚与印制板焊盘之间有0.08mm的距离,如果回流焊接的过程中印制板引脚的温度T 1与PCB焊盘的温度T 2有较大差异,将使得焊料在器材引脚端表面张力γ m1小于焊料在印制板焊盘端表面张力γ m2,导致焊料熔化后优先向引脚方向润湿,引起焊料向上爬升,造成焊料与焊盘脱开,形成芯吸断路。而回流曲线的设置没有对引脚和焊盘的温度差进行特殊调整。
同时,回流焊接过程中的保护气体N2也会影响焊盘金属和器件焊端的表面能和表面张力,进而影响焊料润湿。有研究表明在氮气环境下焊接润湿角的变化达到40%时,润湿可增长约3%~5%,润湿时间可降低15%[3],即氮气能够放大因焊盘/焊端温度差带来的芯吸现象。因此,需调整的温度曲线来焊接SBGA器件,消除芯吸现象带来的开路或短路等不良情况。2.2 网板设计不满足要求焊料量的多少对焊料的润湿爬升、焊点形态及机械性能有较大的影响,因此合理的网板开口设计有利于减少桥连、虚焊等缺陷。SBGA自带焊料的尺寸布局如图6所示,自带焊料是附着在SBGA焊端一侧的相向位置。在装配对位时,发现自带焊料的中心与厂家推荐的印制板封装的中心并不重合,这样会对焊接质量和可靠性带来影响,需要依靠添加焊膏进行对位补偿,因此,应重新设计网板。同时,因焊膏中助焊剂量不同,焊端氧化膜的去除能力会有差异,进而影响了熔融状态下焊料的表面张力,可能导致芯吸现象发生。2.3 前期焊端物理损伤
焊点的最终焊锡量由自带焊料和预置焊膏两部分构成,任何一部分的缺失都可能导致开路问题。经检查发现在来料器件中,偶有存在如图7所示的个别引脚自带焊料缺失情况,此缺陷若在装配前未被有效识别出,则会导致装配故障的出现,进而带来返修工作,产生质量隐患。3 工艺改进
通过上述分析得出的SBGA装焊过程中产生质量问题的三大原因及其影响原理,在后序生产的工艺上,制定了如更改焊接曲线,调整氮气控制量,优化网板开孔和宣贯规范及增加焊前检查工序等相应的优化措施。3.1 优化工艺参数和调整氮气量3.1.1 优化回流焊接工艺参数基于之前的缺陷原因主要是由于引脚温度大于焊盘温度,需要优化上/下各温区温度,最终调整焊盘和引脚温度相当,优化焊料在焊盘上的润湿。考虑到印制板上焊盘电路功能属性(电源、地、信号)所对应的电路铜的质量存在差异,铜的质量越大,升温越慢,因此选取电源或地属性的焊盘确定为测温点,另外设置一个典型测温点放置在引脚端,如图8所示。经过多次反复优化测试,发现如果将回流焊接的3个下温区相对上温区升高5~10℃,就能够弥补之前存在的3~5 s的温度差,从而保证焊料熔化时能够在焊盘与引脚上同步润湿铺展。经过优化前后的温度曲线对比情况如图9所示,优化前后的焊点质量情况对比如图10所示。
3.1.2 调整回流焊时氮气环境
SBGA的引脚可焊端在引脚的中下段,即引脚上端由于材料特性及表面粗糙度等原因属于不可焊接状态。N2的加入加快了焊料的润湿行为,即焊料在引脚温度相对更高时,会优先“更快”地向上润湿,但是受制于引脚上段不润湿,因此焊料形态发生如图11所示的“长到胖”的变化,从而形成芯吸开路。所以考虑极端情况,即关闭氮气,保持上下温区温度一致时,结果SBGA器件的焊点质量依然满足要求,如图12所示。3.2 优化焊膏量设计
3.2.1 增大焊膏量设计基于SBGA的引脚结构为不润湿端+可润湿端,结合板上结构导致焊料的“活动空间”被限制在焊盘与引脚可焊区的区域内,因此不断增加印制板印刷焊膏量,即使焊料熔化后会优先向上润湿,但会随着焊膏量增加而导致焊点尺寸不断增大,并最终与焊盘润湿形成有效连接,过程如图13所示。通过手工烙铁在焊盘上预搪锡和增大网板厚度(开孔面积比为0.993)两个途径来模拟增大焊膏量的方式,同时考虑印刷焊膏存在约50%的体积收缩比,得出计算处理的焊点最终焊料体积散点图分布,如图14所示。
选择优化后的曲线装配的器件状态,其外观检验和X-ray检测均判定合格,如图15所示。
3.2.2 减小焊膏量设计
SBGA装配过程中焊料在熔融状态下的行为受其润湿力(指向焊端)和自身重力(指向焊盘)联合影响,当润湿力大于重力作用,焊料向上移动,此时若焊膏量不足就会出现芯吸开路。反而言之,若润湿力小于重力作用,则焊料向下移动,但受空间结构限制(下方印制板焊盘面积有限)不会出现焊料脱离引脚焊端形成开路。减少焊膏量虽然一定程度上降低了焊料的重力,但因为助焊剂含量的减小导致润湿力也显著下降,研究表明焊膏量更小时重力作用更为明显[4]。因此为减小焊膏量,网板开孔采用圆形,厚度减薄(面积比为1.35),得出计算处理的焊点最终焊料体积散点图分布,如图16所示。装配后的焊点检测良好,如图17所示。3.3 焊端损伤防范工作
经对SBGA器件的来料状态进行抽查,首先确认了焊端损伤主要来源于物料周转。同时经多次试验,其自带焊料的缺失在肉眼确认下能有效识别,这得益于自带焊盘与焊端属于“嵌入式结构”,如图18所示,焊端损伤与否基本对应了自带焊料的有无。基于上述分析,对于焊端损伤的防范工作主要集中在规范周转包装和焊前人工确认。首先对SBGA器件的来料包装要求根据周转防护的相关规范进行培训宣贯;然后优化工艺流程,增加该类型器件的来料检查工序,严禁不满足要求的器件流入生产环节,如图19所示。
3.4 优化结果统计
在上述措施落实后的连续4个月的生产跟踪中,统计得出装配含SBGA器件的共216件,其中存在芯吸开路、短路等缺陷的不合格品有8件,一次装配合格率达到96.3%,达到同类封装器件平均水平,即工艺优化措施有效。4 结论本文对SBGA器件装配一次合格率低的原因进行了分析和优化,得出如下结论:1)SBGA器件的故障主要体现在焊点开路和短路缺陷,两者受焊料芯吸作用影响。2)SBGA芯吸作用的主要原因为回流焊接参数不合理与氮气环境的不良影响、焊膏量不满足要求和焊端物理损伤。3)针对上述原因,优化工艺措施相应为调整温度曲线,降低焊接过程氮气含量,优化网板开孔设计以酌情增大或减小焊膏量,增加装前检查工序。4)经过检验确认和统计计算,优化后的SBGA器件的装配一次合格率由之前的86%提升到96.3%,措施有效。
长按二维码识别关注我们